Graphs with 3-rainbow index n-1 and n-2
نویسندگان
چکیده
Let G = (V (G), E(G)) be a nontrivial connected graph of order n with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ N, where adjacent edges may be colored the same. A tree T in G is a rainbow tree if no two edges of T receive the same color. For a vertex set S ⊆ V (G), a tree connecting S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such that there is a rainbow S-tree for each k-subset S of V (G) is called the k-rainbow index of G, denoted by rxk(G), where k is an integer such that 2 ≤ k ≤ n. Chartrand et al. got that the k-rainbow index of a tree is n−1 and the k-rainbow index of a unicyclic graph is n−1 or n−2. So there is an intriguing problem: Characterize graphs with the k-rainbow index n − 1 and n − 2. In this paper, we focus on k = 3, and characterize the graphs whose 3-rainbow index is n− 1 and n− 2, respectively.
منابع مشابه
Graphs with 4-rainbow index 3 and n-1
Let G be a nontrivial connected graph with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ N, where adjacent edges may be colored the same. A tree T in G is called a rainbow tree if no two edges of T receive the same color. For a vertex set S ⊆ V (G), a tree that connects S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such that there is a ra...
متن کاملRainbow Numbers for Graphs Containing Small Cycles
For a given graph H and n ≥ 1, let f(n,H) denote the maximum number m for which it is possible to colour the edges of the complete graph Kn with m colours in such a way that each subgraph H in Kn has at least two edges of the same colour. Equivalently, any edge-colouring of Kn with at least rb(n,H) = f(n,H) + 1 colours contains a rainbow copy of H. The numbers f(n,H) and rb(Kn, H) are called an...
متن کاملThe 3-rainbow index of a graph
Let G be a nontrivial connected graph with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ N, where adjacent edges may be colored the same. A tree T in G is a rainbow tree if no two edges of T receive the same color. For a vertex subset S ⊆ V (G), a tree that connects S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such that there is a rainbo...
متن کاملRainbow Connectivity of Sparse Random Graphs
An edge colored graph G is rainbow edge connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connectivity of a connected graph G, denoted by rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. In this work we study the rainbow connectivity of binomial random graphs at the connectivity threshold p = logn+ω n...
متن کاملRainbow Spanning Subgraphs of Small Diameter in Edge-Colored Complete Graphs
Let s(n, t) be the maximum number of colors in an edge-coloring of the complete graph Kn that has no rainbow spanning subgraph with diameter at most t. We prove s(n, t) = (n−2 2 ) +1 for n, t ≥ 3, while s(n, 2) = (n−2 2 )
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 35 شماره
صفحات -
تاریخ انتشار 2015